

DIAGRAMS in SCIENCE SCIENCE in DIAGRAMS

Daniel Muzzulini
ISTITUTO SUPERIORE DI ARTE DI ZURIGO
Roma 15 June 2021
[online]

Z

hdk

Zürcher Hochschule der Künste Zurich University of the Arts

SOUND COLOUR SPACE

Sound Colour Space
Zurich University of the Arts (ZHdK)
Virtual Museum Project (2015 – 2016)

Martin Neukom – Dieter Mersch (applicants)
Daniel Muzzulini (project management)
Raimund Vogtenhuber – Philippe Kocher –
Christoph Stähli – Lucas Bennett – Jeroen Visser –
Susanne Schumacher

Partners

Christoph Reuter (Wien)
Benjamin Wardhaugh (Oxford)
Sybille Krämer (Berlin)
Gerhard Dirmoser (Linz)
Robert Fludd (Oxford)

μουσειο Temple of the Muses

Popertions (16,18)

Templin Musical

Templin Musical

Diagrams and sets

Diagrams and keywords

Diagrams, sets & keywords

Diagrams

Links to diagrams

Syntonic chromatic scale of twelve notes arranged on a circle. The structure of the scale is different from [210]. It has four different semitones:

Chromatic semitones: 25:24 and 135:128

Diatonic semitones: 16:15 and 27:25.

The arrangement of the notes on the circle reflects a logarithmic understanding of pitch. However, the angles are neither equal to 30° (12-tet) nor do they express the four different sizes of the semitones.

The resulting scale is C-C#-D-Eb-E-F-F#-G-G#-A-Bb-B-C. Mersenne uses only sharps as alteration signs. The underlying C-major scale has a flat second degree and is of the form t-T-S-T-t-T-S, so that the solmisation agrees with Descartes's solmisation [316,208,209].

A solmisation syllable is given for both Bb (B-FA) and B (MI).

The diagram is a complete analysis of the scale, where for each pair of notes (except for the semitones) both possible ratios are indicated on the connecting line. For example, B-D (MI-RE) has the ratios 32:27 and 27:16 corresponding to a Pythagorean minor third and a Pythagorean major sixth.

This diagram was probably inspired by a similar diagram for the syntonic diatonic scale by Johannes Lippius (1612) [515]. Mersenne's estimation of the octave as a multiple of the syntonic comma [210] has also its predecessor in Lippius: "Octava comprehendit Commata ultrà quinquaginta" [Lippius 1612, fol. C7r]

Related sets:

Combinations: kappa-n

Solmization

Syntonic chromatic scale

Source: Mersenne, Marin (1636), Harmonie Universelle, contenant la Theorie et la Pratique de la Musique, Paris 1636, Traitez des Consonances, des Dissonances, des Genres, des Modes & de la Composition, Livre Second, Des Dissonances, p.132

Quotation

Set memberships

Sets

Links to diagrams

is a chromatic semitone (25:24) lower than E. There are fiv...

http://sound-colour-space.zhdk.ch/sets/10027

Keywords

http://sound-colour-space.zhdk.ch/keywords/bisection-of-musical-intervals

Exhibitions

http://sound-colour-space.zhdk.ch/exhibitions

Experiments

http://sound-colour-space.zhdk.ch/virtuallab

Experiment: Syntonic Grid and Spiral

Furthermore, there is a short musical example with two voices, which can be transposed into different keys [+/-] in order to make the distortions audible. The example can also be played in a syntonic tone system of 53 pitches per octave "chi_53", which contains 39 diatonic scales of the standard structure. An equivalent scale with D in the centre was proposed by Arthur von Oettingen (1917) [558].

orange, D = yellow, ...

Archive

http://sound-colour-space.zhdk.ch/archive

Timeline

http://sound-colour-space.zhdk.ch/timeline

Sistema enarmonica pitagorico divisione symmetrico del tuono

Cochlaeus (1512)

Tonus =

2 semituoni minori

+ 1 comma pitagorico

Ottava =

5 Tuoni + 2 semituoni =

12 semituoni + 5 commata

17 cromata pitagorici *)

*) croma = pitch class mod octave

Lodovico Fogliano (1529)

just intonation: complete graphs

Lodovico Fogliano (1529)

Monochordi in puris numeris rationi tantum subjecta Divisio

Gioseffo Zarlino: Heliconae

Croma: Monochord e Polychord

Zarlino interattivo (2020)

Zarlino: Helicona/Volvelle: synthetic Daniel Muzzulini (2019)

Zarlino: Helicona/Volvelle: analog Daniel Muzzulini (2020)

https://muwiserver.synology.me/zarlino/ Christoph Reuter 2020. Polyphonic Clavichord with19 just intonation pitches per octave (approximated through 53-EDO)

Tastiera con 16 suoni sintonici per ottava

Interpretatione di Patrizio Barbieri (2002, p. 161)

Zarlino_19: syntonico?

Mapping: Zarlino 16 – 19 via 53-EDO

Analoge Hellicona/Volvelles

[analog, 2020 Klavier/53-EDO Clavichord]

Keyboard mapping: Zarlino 19 => Zarlino 16

[Keyboard-Vergleich zweier Tastaturen bei Zarlino]

Greek Tetrachords

Johannes Cochlaeus

Guillermo de Podio (1495)

Fludd: binary durations

 $[\leftarrow]$

Fludd: lower triangle

Fludd: upper triangle

Fludd: Monochord

Fludd: Hexachords

Thomas Salmon 1672

Two entire Octaves are con=

Christopher Simpson 1667

Fludd: Tree sentence

Hierarchies and networks

Networks and dimension

Figure 7.1 Different topologies implemented on the same 2-D pattern of neurons (based on Morasso and Sanguineti 1996, 291).

